Entries by BH

Bernoulli Aids Early Detection of Hypotension in the ICU

A recent study published in Anesthesiology by Hatib etal. [Anesthesiology 10 2018 Vol. 129, 663-674] from the University of California (UC) at Irvine Medical Center demonstrated that large sets of real-time data—high-fidelity arterial waveforms—applied to machine learning algorithms could identify patients experiencing onset of hypotension up to 15 minutes before its occurrence. UC Irvine used Bernoulli One to collect more than 500,000 waveforms, which were then used to train a machine-learning algorithm to predict hypotension.

What clinicians can learn from commercial aviation

Between 2006 and 2011, the Health Technology Foundation (HTF), a non-profit organization that advocates for the development of safe and effective health IT, conducted a series of surveys designed to capture the impact of device alarms on clinical workflow and hospital practices.

With alarms, sometimes less is more

The average hospital room contains between 15 and 20 medical devices. Each patient will generate about 135 alarms each day—or about 11 alarms per hour for a 12-hour nursing shift.